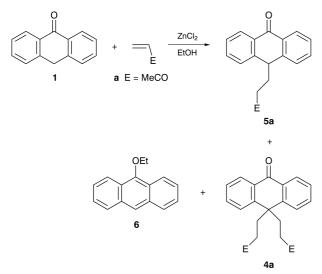
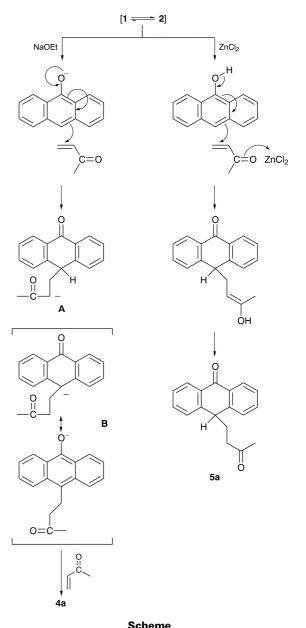
Chemoselective Reactions of Anthrone with α , β -Unsaturated Ketones


Woonphil Baik,^{**} Cheol Hun Yoon,^{*} Ki Chang Lee,^{*} Hyun Joo Lee,^{*} Sangho Koo,^{*} Jihan Kim,^b Byunghoon Yoon^b and Hakwon Kim^b

^aDepartment of Chemistry, Myong Ji University, Yong In, Kyung Ki Do, 449-728, Korea ^bDepartment of Chemistry, Kyung Hee University, Yong In, Kyung Ki Do, 449-701, Korea J. Chem. Research (S), 1998, 358–359 J. Chem. Research (M), 1998, 1418–1424


In the presence of ZnCl₂, 1,4-conjugated addition of anthrone with α , β -unsaturated ketones proceeded to give mono-Michael adducts, whereas in basic solution it gave bis-Michael adducts.

The conjugate addition reaction of anthrone with α , β unsaturated carbonyl compounds in the presence of base is of the Michael type, which gives the bis-Michael adducts 4.⁶ These similar consecutive double Michael reactions are observed with substrates containing active methylene groups, such as indanone, fluorene or acetophenone.⁷ In view of the importance of selective mono-Michael adducts in organic synthesis, the search for new reagents to effect the mono-Michael addition is worthwhile. There is currently no direct method available for the preparation of mono-Michael adducts with anthrone.

We now wish to report a new Lewis-acid-catalysed reaction of anthrone with a variety of α,β -unsaturated ketones. Surprisingly, in the presence of a catalytic amount of ZnCl₂ (0.03 equiv.), anthrone reacted with methyl vinyl ketone to give mono 10-substituted anthrone **5a** in a yield of 89% when the reaction was carried out in EtOH at reflux. By varying the amount of ZnCl₂, the yields and ratio of products were not influenced. Using mineral acid or toluene-*p*-sulfonic acid instead of ZnCl₂, it was found that in ethanol the known O-alkylated adduct 9-ethoxyanthracene **6**, was the major product, which is formed when anthrone is boiled under reflux in ethanol in the presence of H₂SO₄ without alkene.^{4a}

We have extended the mono-Michael reaction of anthrone to a variety of α,β -unsaturated ketones. In all cases, mono-Michael adducts were obtained in reasonable yields, even with substituted α,β -unsaturated ketones such as cyclohexenone or cyclopentenone. It is rather surprising that the chemoselective Michael reactions of anthrone were performed by changing the catalyst. In fact, limited examples of α,β -unsaturated compounds, such as acrylonitrile,^{6a} methylacrylate^{6b,c} and methyl vinyl ketone,⁸ have been reported in the base-catalysed Michael reactions of anthrone. A variation of alkenes and other reaction conditions were not reported at all. In an attempt to compare the reactivities of anthrone under two distinctive conditions we have examined a series of α,β -unsaturated ketones under basic conditions. We found that the conjugate addition reaction proceeded using both catalytic (0.02 equiv.) and stoichiometric amounts of NaOCH₃ to produce the bis-Michael adducts **4** in similar yields. For enones with no β substituents, small amounts (<5%) of mono 10-substituted

^{*}To receive any correspondence.

Entry	Alkene	Conditions		Product	
		Lewis acid (equiv.)	Solvent	Time (t/h)	Yield (%) ^a
1	Methyl vinyl ketone, a	ZnCl ₂ (0.03)	EtOH	3, 5a	89
2	Methyl vinyl ketone, a	$ZnCl_{2}$ (1.1)	EtOH	2, 5a	81
3	Methyl vinyl ketone, a	Znl ₂ (0.1)	EtOH	10, 5a	35
4	Methyl vinyl ketone, a	$AIC\overline{I}_{3}(0.1)$	EtOH	12 Mixture	
5	Methyl vinyl ketone, a	H_2SO_4 (0.1)	EtOH	12, 6	45
6	Methyl vinyl ketone, a	pTSA (0.2)	EtOH	12, 6	45
7	Ethyl vinyl ketone, b	ZnCl ₂ (0.07)	MeOH	2, 5b	67
8	trans-4-Methoxybut-3-en-2-one, c	$ZnCl_{2}$ (0.14)	MeOH	2, 5c	22
9	Cyclopentenone, d	$ZnCl_{2}$ (0.05)	DMSO	7, 5d	77
10	Cyclohexenone, e	$ZnCl_{2}$ (0.07)	MeOH	3, 5e	86
11	Phenyl vinyl ketone, f	$ZnCl_{2}$ (0.14)	MeOH	2, 5f	47

Table 1 Conjugated addition reaction of anthrone under acidic conditions at reflux

anthrones 5 were observed independent of the amounts of α,β -unsaturated ketones and NaOCH₃. On the other hand, β -substituted α,β -unsaturated ketones, such as cyclohexenone, cyclopentenone or *trans*-4-methoxybut-3-en-2one, gave mono-Michael adducts, as for the ZnCl₂-catalysed Michael reaction. The steric hindrance of the enone terminus was found to be the most critical factor in the base-catalysed mono-Michael reaction of anthrone.

1 + Alkene NaOMe	4 +	5
Alkene	% Yield 4	% Yield 5
Methyl vinyl ketone Ethyl vini ketone <i>trans</i> -4-Methoxybut-3-en-2-one Cyclopentenone Cyclohexenone Phenyl vinyl ketone	89 88 Trace Trace Trace 50	5 Trace Trace 85 80 None

The success of the mono-Michael reaction with $ZnCl_2$ may be explained by the equilibrium position between the tautomers anthrone (1) and anthracenol (2) lying towards the enol form in acidic media. Thus, the favorable formation of anthracenol 2 reacts with methyl vinyl ketone to give the mono-Michael adduct 5a. Subsequent enolisation of 5a would be less favorable and therefore the successive bis-Michael reaction would be disfavoured (Scheme). Meanwhile, under basic conditions the anthracenolate ion reacts with methyl vinyl ketone to give the corresponding carbanion A. This may then undergo a proton shift to give the more stable anthracenolate ion B (it may be the case that the C10 proton of the anthrone part in A is more acidic than the α hydrogen of the ketone part). Therefore, the resulting anthracenolate ion B is readily reacted with the alkene to give the bis-Michael adduct 4a (see the Scheme on opposite page).

We thank the Korea Science and Engineering Foundation (KOSEF 96-0501-09-01-3) and the Myongji Regional Research Center.

Techniques used: H NMR, ¹³C NMR, IR and mass spectrometry

References: 8

Schemes: 3

Table 2: Conjugated addition reaction of anthrone under basic conditions at reflux

Received, 22nd October 1997; Accepted, 6th March 1998 Paper E/7/07625H

References cited in this synopsis

- 4 (a) I. Willner and M. Halpern, Synthesis, 1979, 177.
- 6 (a) H. A. Bruson, J. Org. Chem., 1942, 7, 2457. (b) J. S. Meek, W. B. Evans, V. Godefroi, W. R. Benson, M. F. Wilcox, W. G. Clark and T. Tiedman, J. Org Chem., 1961, 26, 4281. (c) M. Koerner and B. Rickborn, J. Org Chem., 1990, 55, 2662.
- 7 (a) H. A. Bruson and T. W. Riener, J. Am. Chem. Soc., 1942, 64, 2850. (b) T. Money, R. A. Raphael, A. I. Scott and D. W. Young, J. Chem. Soc., 1961, 3958.
- 8 (a) E. Gomez-Bengona, J. M. Cuerva, C. Mateo and A. M. Echavarren, J. Am. Chem. Soc., 1996, 118, 8553. (b) E. D. Bergmann, D. Ginsburg and R. Rappo, Org. React., 1959, 10, 179.